
Chapter 12

Surface plasmons

12.1 Introduction

The interaction of metals with electromagnetic radiation is largely dictated by the
free conduction electrons in the metal. According to the simple Drude model, the
free electrons oscillate 180◦ out of phase relative to the driving electric field. As a
consequence, most metals possess a negative dielectric constant at optical frequencies
which causes e.g. a very high reflectivity. Furthermore, at optical frequencies the
metal’s free electron gas can sustain surface and volume charge density oscillations,
called plasmon polaritons or plasmons with distinct resonance frequencies. The ex-
istence of plasmons is characteristic for the interaction of metal nanostructures with
light. Similar behavior cannot be simply reproduced in other spectral ranges us-
ing the scale invariance of Maxwell’s equations since the material parameters change
considerably with frequency. Specifically, this means that model experiments with
e.g. microwaves and correspondingly larger metal structures cannot replace experi-
ments with metal nanostructures at optical frequencies.The surface charge density
oscillations associated with surface plasmons at the interface between a metal and
a dielectric can give rise to strongly enhanced optical near-fields which are spatially
confined to the interface. Similarly, if the electron gas is confined in three dimensions,
as in the case of a small subwavelength particle, the overall displacement of the elec-
trons with respect to the positively charged lattice leads to a restoring force which
in turn gives rise to specific particle plasmon resonances depending on the geometry
of the particle. In particles of suitable (usually pointed) shape, extreme local charge
accumulations can occur that are accompanied by strongly enhanced optical fields.

The study of optical phenomena related to the electromagnetic response of metals
has been recently termed as plasmonics or nanoplasmonics. This rapidly growing
field of nanoscience is mostly concerned with the control of optical radiation on the
subwavelength scale. Many innovative concepts and applications of metal optics have
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been developed over the past few years and in this chapter we will discuss a few ex-
amples. We will first review the optical properties of noble metal structures of various
shapes, ranging from two-dimensional thin films to one and zero dimensional wires
and dots, respectively. The analysis will be based on Maxwell’s equations using the
metal’s frequency dependent complex dielectric function.Since most of the physics of
the interaction of light with metal structures is hidden in the frequency dependence
of the metal’s complex dielectric function, we will begin with a discussion of the fun-
damental optical properties of metals. We will then turn to important solutions of
Maxwell’s equations for noble metal structures, i.e. the plane metal-dielectric inter-
face and subwavelength metallic wires and particles that show a resonant behavior.
Finally, and where appropriate during the discussion, applications of surface plas-
mons in nano-optics will be discussed. As nanoplasmonics is a very active field of
study we can expect that many new applications will be developed in the years to
come and that dedicated texts will be published. Finally, it should be noted that
optical interactions similar to those discussed here are, also encountered for infrared
radiation interacting with polar materials. The corresponding excitations are called
surface phonon polaritons.

12.2 Optical properties of noble metals

The optical properties of metals and noble metals in particular have been discussed by
numerous authors [1-3]. We give here a short account with emphasis on the classical
pictures of the physical processes involved. The optical properties of metals can be
described by a complex dielectric constant that depends on the frequency of the light
(see chapter 2). The optical properties of metals are determined mainly (i) by the
fact that the conduction electrons can move freely within the bulk of material and
(ii) that interband excitations can take place if the energy of the photons exceeds the
band gap energy of the respective metal. In the picture we adopt here, the presence
of an electric field leads to a displacement r of an electron which is associated with
a dipole moment µ according to µ = er. The cumulative effect of all individual
dipole moments of all free electrons results in a macroscopic polarization per unit
volume P = nµ, where n is the number of electrons per unit volume. As discussed in
chapter 2, the electric displacement D is related to this macroscopic polarization by

D(r, t) = ε0E(r, t) + P(r, t) . (12.1)

Furthermore, also the constitutive relation

D = ε0εE (12.2)
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was introduced. Using (12.1) and (12.2), assuming an isotropic medium, the dielectric
constant can be expressed as [2, 4]

ε = 1 +
|P|
ε0|E|

(12.3)

The displacement r and therefore the macroscopic polarization P can be obtained
by solving the equation of motion of the electrons under the influence of an external
field.

12.2.1 Drude-Sommerfeld theory

As a starting point, we consider only the effects of the free electrons and apply the
Drude-Sommerfeld model for the free-electron gas (see e.g. [5]).

me
∂2r

∂t2
+ meΓ

∂r

∂t
= eE0e

−iωt (12.4)

where e and me are the charge and the effective mass of the free electrons, and E0

and ω are the amplitude and the frequency of the applied electric field. Note that
the equation of motion contains no restoring force since free electrons are considered.
The damping term is proportional to Γ = vF/l where vF is the Fermi velocity and l
is the electrons mean free path between scattering events. Solving (12.4) using the
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Figure 12.1: Real and imaginary part of the dielectric constant forgold according to
the Drude-Sommerfeld free electron model (ωp=13.8·1015 s−1,Γ = 1.075 · 1014 s−1).
The blue solid line is the real part, the red, dashed line is the imaginary part. Note
the different scales for real and imaginary part.
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Ansatz r(t) = r0e−iωt and using the result in (12.3) yields

εDrude(ω) = 1 −
ω2

p

ω2 + iΓω
. (12.5)

Here ωp =
√

ne2/(meε0) is the volume plasma frequency. Expression (12.5) can be
divided into real and imaginary parts as follows

εDrude(ω) = 1 −
ω2

p

ω2 + Γ2
+ i

Γω2
p

ω(ω2 + Γ2)
(12.6)

Using ωp=13.8·1015 s−1 and Γ = 1.075 · 1014 s−1 which are the values for gold [4] the
real and the imaginary parts of the dielectric function (12.6) are plotted in Fig. 12.1
as a function of the wavelength over the extended visible range. We note that the real
part of the dielectric constant is negative over the extended visible range. One obvi-
ous consequence of this behavior is the fact that light can penetrate a metal only to
a very small extent since the negative dielectric constant leads to a strong imaginary
part of the refractive index n =

√
ε. Other consequences will be discussed later. The

imaginary part of ε describes the dissipation of energy associated with the motion of
electrons in the metal (see problem 12.1).

12.2.2 Interband transitions

Although the Drude-Sommerfeld model gives quite accurate results for the optical
properties of metals in the infrared regime, it needs to be supplemented in the visible
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Figure 12.2: Contribution of bound electrons to the dielectric function of gold. The
parameters used are ω̃p = 45 · 1014 s−1, γ = 8.35 · 10−16 s−1, and ω0 = 2πc/λ, with
λ=450 nm. The solid blue line is the real part, the dashed red curve is the imaginary
part of the dielectric function due to bound electrons.
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range by the response of bound electrons. For example for gold, at a wavelength
shorter than ∼ 550 nm the measured imaginary part of the dielectric function in-
creases much more strongly as predicted by the Drude-Sommerfeld theory. This is
because higher energy photons can promote electrons of lower-lying bands into the
conduction band. In a classical picture such transitions may be described by exciting
the oscillation of bound electrons. Bound electrons in metals exist e.g. in lower-lying
shells of the metal atoms. We apply the same method that was used above for the
free electrons to describe the response of the bound electrons. The equation of motion
for a bound electron reads as

m
∂2r

∂t2
+ mγ

∂r

∂t
+ αr = eE0e

−iωt . (12.7)

Here, m is the effective mass of the bound electrons, which is in general different
from the effective mass of a free electron in a periodic potential, γ is the damping
constant describing mainly radiative damping in the case of bound electrons, and α is
the spring constant of the potential that keeps the electron in place. Using the same
Ansatz as before we find the contribution of bound electrons to the dielectric function

εInterband(ω) = 1 +
ω̃2

p

(ω2
0 − ω2) − iγω

. (12.8)

Here ω̃p =
√

ñe2/mε0 with ñ being the density of the bound electrons. ω̃p is intro-
duced in analogy to the plasma frequency in the Drude-Sommerfeld model, however,
obviously here with a different physical meaning and ω0 =

√

α/m. Again we can
rewrite (12.8) to separate the real and imaginary parts

εInterband(ω) = 1 +
ω̃2

p(ω2
0 − ω2)

(ω2
0 − ω2)2 + γ2ω2

+ i
γω̃2

pω

(ω2
0 − ω2)2 + γ2ω2

. (12.9)

Fig. 12.2 shows the contribution to the dielectric constant of a metal∗ that derives
from bound electrons. A clear resonant behavior is observed for the imaginary part
and a dispersion-like behavior is observed for the real part.Fig. 12.3 is a plot of the
dielectric constant (real and imaginary part) taken from the paper of Johnson &
Christy [6] for gold (open circles). For wavelengths above 650 nm the behavior clearly
follows the Drude-Sommerfeld theory. For wavelength below 650 nm obviously inter-
band transitions become significant. One can try to model the shape of the curves by
adding up the free-electron [Eq. (12.6)] and the interband absorption contributions
[Eq. (12.9)] to the complex dielectric function (squares). Indeed, this much better
reproduces the experimental data apart from the fact that one has to introduce a
constant offset ε∞ to (12.6) which accounts for the integrated effect of all higher-
energy interband transition not considered in the present model (see e.g. [7]). Also,

∗This theory naturally also applies for the behavior of dielectrics and the dielectric response of over
a broad frequency range consists of several absorption bands related to different electromagnetically
excited resonances [2].
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since only one interband transition is taken into account, the model curves still fail
to reproduce the data below ∼500 nm.

12.3 Surface plasmon polaritons at plane interfaces

By definition surface plasmons are the quanta of surface-charge-density oscillations,
but the same terminology is commonly used for collective oscillations in the electron
density at the surface of a metal. The surface charge oscillations are naturally cou-
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Figure 12.3: Dielectric function of gold: Experimental values and model. Upper
panel: Imaginary part. Lower panel: Real part. Open circles: experimental values
taken from [6].Squares: Model of the dielectric function taking into account the free
electron contribution and the contribution of asingle interband transition. Note the
different scales for the abscissae.
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pled to electromagnetic waves which explains their designation as polaritons. In this
section, we consider a plane interface between two media. One medium is charac-
terized by a general, complex frequency-dependent dielectric function ε1(ω) whereas
the dielectric function of the other medium ε2(ω) is assumed to be real. We choose
the interface to coincide with the plane z = 0 of a Cartesian coordinate system (see
Fig. 12.4). We are looking for homogeneous solutions of Maxwell’s equations that
are localized at the interface. A homogeneous solution is an eigenmode of the sys-
tem, i.e. a solution that exists without external excitation. Mathematically, it is the
solution of the wave equation

∇×∇× E(r, ω) −
ω2

c2
ε(r, ω) E(r, ω) = 0 , (12.10)

with ε(r, ω) = ε1(ω) if z < 0 and ε(r, ω) = ε2(ω) if z > 0.The localization at
the interface is characterized by electromagnetic fields that exponentially decay with
increasing distance to the interface into both half spaces. It is sufficient to consider
only p-polarized waves in both halfspaces because no solutions exist for the case of
s-polarization (see problem 12.2).
P-polarized plane waves in halfspace j = 1 and j = 2 can be written as

Ei =





Ej,x

0
Ej,z



 eikxx−iωteikj,zz. j = 1, 2 (12.11)
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Figure 12.4: Interface between two media 1 and 2 with dielectric functions ε1 and ε2.
The interface is defined by z=0 in a Cartesian coordinate system. In each halfspace
we consider only a single p-polarized wave because we are looking for homogeneous
solutions that decay exponentially with distance from the interface.
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The situation is depicted in Fig. 12.4. Since the wave vector parallel to the interface is
conserved (see chapter 2) the following relations hold for the wave vector components

k2
x + k2

j,z = εjk
2, j = 1, 2 . (12.12)

Here k = 2π/λ , where λ is the vacuum wavelength. Exploiting the fact that the
displacement fields in both half spaces have to be source free, i.e. ∇ ·D = 0, leads to

kxEj,x + kj,zEj,z = 0, j = 1, 2 , (12.13)

which allows us to rewrite (12.11) as

Ej = Ej,x





1
0

−kx/kj,z



 eikj,zz, j = 1, 2 . (12.14)

The factor eikxx−iωt is omitted to simplify the notation. Eq. (12.14) is particularly
useful when a system of stratified layers is considered (see e.g. [8], p. 40 and problem
12.4).While (12.12) and (12.13) impose conditions that define the fields in the re-
spective half spaces, we still have to match the fields at the interface using boundary
conditions. Requiring continuity of the parallel component of E and the perpendicular
component of D leads to another set of equations which read as

E1,x − E2,x = 0

ε1E1,z − ε2E2,z = 0 (12.15)

Equations (12.13) and (12.15) form a homogeneous system of four equations for the
four unknown field components. The existence of a solution requires that the respec-
tive determinant vanishes. This happens either for kx = 0, which does surely not
describe excitations that travel along the interface, or otherwise for

ε1k2,z − ε2k1,z = 0 . (12.16)

In combination with (12.12), Eq. (12.16) leads to a dispersion relation, i.e. a relation
between the wave vector along the propagation direction and the angular frequency
ω

k2
x =

ε1ε2

ε1 + ε2
k2 =

ε1ε2

ε1 + ε2

ω2

c2
. (12.17)

We also obtain an expression for the normal component of the wavevector

k2
j,z =

ε2
j

ε1 + ε2
k2, j = 1, 2. (12.18)

Having derived (12.17) and (12.18) we are in the position to discuss the conditions
that have to be fulfilled for an interface mode to exist. For simplicity, we assume that
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the imaginary parts of the complex dielectric functions are small compared with the
real parts such that they may be neglected. A more detailed discussion that justifies
this assumption will follow (see also [8]). We are looking for interface waves that
propagate along the interface. This requires a real kx.† Looking at (12.17) this can
be fulfilled if both, the sum and the product of the dielectric functions are either both
positive or both negative. In order to obtain a ’bound’ solution, we require that the
normal components of the wave vector are purely imaginary in both media giving
rise to exponentially decaying solutions. This can only be achieved if the sum in the
denominator of (12.18) is negative. From this we conclude that the conditions for an
interface mode to exist are the following:

ε1(ω) · ε2(ω) < 0 (12.19)

ε1(ω) + ε2(ω) < 0 (12.20)

which means that one of the dielectric functions must be negative with an absolute
value exceeding that of the other. As we have seen in the previous section, metals,
especially noble metals such as gold and silver, have a large negative real part of the
dielectric constant along with a small imaginary part. Therefore, at the interface
between a noble metal and a dielectric, such as glass or air, localized modes at the
metal-dielectric interface can exist. Problem 12.3 discusses a possible solution for
positive dielectric constants.

12.3.1 Properties of surface plasmon polaritons

Using the results of the previous section we will now discuss some properties of surface
plasmon polaritons (SPP). To accommodate losses associated with electron scattering
(ohmic losses) we have to consider the imaginary part of the metal’s dielectric function
[9]

ε1 = ε′1 + iε′′1 (12.21)

with ε′1 and ε′′1 being real. We assume that the adjacent medium is a good dielectric
with negligible losses, i.e. ε2 is assumed to be real. We then naturally obtain a complex
parallel wavenumber kx = k′

x + ik′′
x . The real part k′

x determines the SPP wavelength,
while the imaginary part k′′

x accounts for the damping of the SPP as it propagates
along the interface. This is easy to see by using a complex kx in (12.11). The real
and imaginary parts of kx can be determined from (12.17) under the assumption that
|ε′′1 | & |ε′1|:

k′
x ≈

√

ε′1ε2

ε′1 + ε2

ω

c
(12.22)

†Later we will see that by taking into account the imaginary parts of the dielectric functions kx

becomes complex which leads to a damped propagation in x direction.
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k′′
x ≈

√

ε′1ε2

ε′1 + ε2

ε′′1ε2

2ε′1(ε
′
1 + ε2)

ω

c
(12.23)

in formal agreement with Eq. (12.17). For the SPP wavelength we thus obtain

λSPP =
2π

k′
x

≈

√

ε′1 + ε2

ε′1ε2
λ (12.24)

where λ is the wavelength of the excitation light in vacuum.

The propagation length of the SPP along the interface is determined by k′′
x which,

according to (12.11), is responsible for an exponential damping of the electric field
amplitude. The 1/e decay length of the electric field is 1/k′′

x or 1/(2k′′
x ) for the

intensity. This damping is caused by ohmic losses of the electrons participating in
the SPP and finally results in a heating of the metal. Using ε2 = 1 and the dielectric
functions of silver (ε1 = −18.2 + 0.5i) and gold (ε1 = −11.6 + 1.2i) at a wavelength
of 633 nm we obtain a 1/e intensity propagation lengths of the SPP of ∼60 µm
and ∼10 µm, respectively.The decay length of the SPP electric fields away from the
interface can be obtained from (12.18) to first order in |ε′′1 | / |ε′1| using (12.21) as

k1,z =
ω

c

√

ε′21
ε′1 + ε2

[

1 + i
ε′′1
2ε′1

]

(12.25)
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Figure 12.5: Dispersion relation of surface-plasmon polaritons at a gold/air interface.
The solid line is the dispersion relation that results from a dielectric function account-
ing for a single interband transition. The dashed line results from using a Drude type
dielectric function. The dash-dotted straight line is the light line ω = c · kx in air.
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k2,z =
ω

c

√

ε2
2

ε′1 + ε2

[

1 − i
ε′′1

2(ε′1 + ε2)

]

(12.26)

Using the same parameters for silver and gold as before and safely neglecting the very
small imaginary parts we obtain for the 1/e decay lengths pairs (1/k1,z, 1/k2,z) of the
electric fields (23 nm, 421 nm) and (28 nm, 328 nm), respectively. This shows that
the decay into the metal is much shorter than into the dielectric. It also shows that a
sizable amount of the SPP electric field can reach through a thin enough metal film.
It is now also clear that the conclusions made in section 12.3 based on ignoring the
complex part of the dielectric function were correct. The decay of the SPP into the air
halfspace was observed directly in [10] using a scanning tunnelling optical microscope.

An important parameter is the intensity enhancement near the interface due to
the excitation of surface plasmons. This parameter can be obtained by evaluating
the ratio of the incoming intensity and the intensity right above the metal interface.
We skip this discussion for the moment and come back to this after the next section
(see problem 12.4). However, we note that losses in the plasmon’s propagation were
directly derived from the metal’s bulk dielectric function. This is a good approxima-
tion as long as the characteristic dimensions of the considered metal structures are
larger than the electron mean-free path. If the dimensions become smaller, there is
an increasing chance of electron scattering from the interface. In other words, close
to the interface additional loss mechanisms have to be taken into account which lo-
cally increase the imaginary part of the metal’s dielectric function. It is difficult to
correctly account for these so-called nonlocal losses as the exact parameters are not
known. Nevertheless, since the fields associated with surface plasmons penetrate into
the metal by more than 10nm the nonlocal effects associated with the first few atomic
layers can be safely ignored.

12.3.2 Excitation of surface plasmon polaritons

In order to excite surface-plasmon polaritons we have to fulfill both energy and mo-
mentum conservation. To see how this can be done we have to analyze the dispersion
relation of the surface waves, i.e. the relation between energy in terms of the angular
frequency ω and the momentum in terms of the wave vector in the propagation direc-
tion kx given by Eq. (12.17) and Eq. (12.22). In order to plot this dispersion relation
we assume that ε1 is real, positive, and independent of ω which is true for e.g. air
(ε1 = 1).

For the metal we discuss two cases: (i) the pure Drude-Sommerfeld dielectric
function given by (12.6) and (ii) the more realistic dielectric function that includes an
interband transition (12.9). For both cases only the real part of ε2(ω) is considered,
neglecting the damping of the surface wave in the x-direction. Fig. 12.5 shows the
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respective plots. The solid line is the dispersion relation for the more realistic metal.
The thick dashed line is the corresponding dispersion relation when interband tran-
sition effects are neglected, i.e. for a pure Drude metal. The dash-dotted line is the
light line ω = c · kx in air and the horizontal thin dashed lines mark important values
of ω. For large kx the simple Drude description results in a dispersion relation that
clearly differs from the more realistic case, although the main features are similar.
The dispersion relation shows two branches, a high energy and a low energy branch.
The high energy branch, called Brewster mode, does not describe true surface waves
since according to (12.18) the z-component of the wave vector in the metal is no longer
purely imaginary. This branch will not be considered further. The low energy branch
corresponds to a true interface wave, the surface plasmon polariton. The annex polari-
ton is used to highlight the intimate coupling between the charge density wave on the
metal surface (surface plasmon) with the light field in the dielectric medium (photon).

For completeness we need to mention that if damping is taken fully into account
there is a continuous transition from the surface plasmon dispersion in Fig. 12.5 into
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Figure 12.6: Excitation of surface plasmons. (a) Close up of the dispersion relation
with the free-space light line and the tilted light line in glass. (b) Experimental ar-
rangements to realize the condition sketched in (a). Left: Otto configuration. Right:
Kretschmann configuration. The metal layer is sketched in yellow. L: laser, D: detec-
tor, M: metal layer.
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the upper high energy branch. If we follow the dispersion curve in Fig. 12.5 starting
from ω = 0 then we first move continuously from the light line towards the horizontal
line determined by the surface plasmon resonance condition ε2(ω) = 1. However, as
the dispersion curve approaches this line the losses start to increase drastically. As a
consequence, as ω is further increased the dispersion curve bends back and connects
to the upper branch. In the connecting region the energy of the mode is strongly
localized inside the metal which explains the high losses. The backbending effect
has been experimentally verified (c.f. Ref. [11]) and poses a limit to the maximum
wavenumber kx that can be achieved in an experiment. Usually, this maximum kx is
smaller than ≈ 2ω/c.

An important feature of surface plasmons is that for a given energy h̄ω the wave
vector kx is always larger than the wave vector of light in free space. This is obvious
by inspecting (12.17) and also from Fig. 12.5 and Fig. 12.6 (a) where the light line ω/c
is plotted as a dash-dotted line. This light line is asymptotically approached by the
SPP dispersion for small energies. The physical reason for the increased momentum
of the SPP is the strong coupling between light and surface charges. The light field
has to ”drag” the electrons along the metal surface. Consequently, this means that a
SPP on a plane interface cannot be excited by light of any frequency that propagates
in free space. Excitation of a SPP by light is only possible if the wavevector of the
exciting light can be increased over its free-space value. There exist several ways to
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Figure 12.7: Excitation of surface plasmons in the Otto configuration. The reflectivity
of the exciting beam is plotted as a function of the incident angle and for different air
gaps (in nm). The curves are evaluated for a gold film. For comparison, a single trace
is also plotted for silver for which the resonance is much sharper because of lower
damping.
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achieve this increase of the wave vector component. The conceptually most simple
solution is to excite surface plasmons by means of evanescent waves created at the
interface between a medium with refractive index n > 1. The light line in this case is
tilted by a factor of n since ω = ck/n. This situation is shown in Fig. 12.6 (a) which
shows the SPP dispersion with the free-space light line and the tilted light line in glass.

Fig. 12.6 (b) shows a sketch of the possible experimental arrangements that realize
this idea. In the Otto configuration [12] the tail of an evanescent wave at a glass/air
interface is brought into contact with a metal-air interface that supports SPPs. For
a sufficiently large separation between the two interfaces (gap width) the evanescent
wave is only weakly influenced by the presence of the metal. By tuning the angle of
incidence of the totally reflected beam inside the prism, the resonance condition for
exitation of SPPs, i.e. the matching of the parallel wave vector component, can be
fulfilled. The excitation of a SPP will show up as a minimum in the reflected light.
The reflectivity of the system as a function of the angle of incidence and of the gap
width is shown in Fig. 12.7. For the angle of incidence a clear resonance is observed at
43.5◦. For a small gap width the resonance is broadened and shifted due to radiation
damping of the SPP. This is caused by the presence of the glass halfspace which allows
the SPP to rapidly decay radiatively by transforming the evanescent SPP field into a
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Figure 12.8: Excitation of surface plasmons in the Kretschmann configuration. The
reflectivity of the exciting beam is plotted as a function of the incident angle and for
different air gaps (in nm). The curves are evaluated for a gold film. For comparison
a single trace is also plotted for silver. Note the the much sharper resonance due to
the smaller damping of silver as compared to gold. The critical angle of total internal
reflection shows up as a discontinuity marked by an arrow.
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propagating field in the glass. On the other hand, for a gap width that is too large
the SPP can no longer be efficiently excited and the resonance vanishes.

The Otto configuration proved to be experimentally inconvenient because of the
challenging control of the tiny air gap between the two interfaces. In 1971 Kretschmann
came up with an alternative method to excite SPP that solved this problem [13]. In
his method, a thin metal film is deposited on top of a prism. The geometry is sketched
inFig. 12.6 (b). To excite a surface plasmon at the metal/air interface an evanescent
wave created at the glass/metal interface has to penetrate through the metal layer.
Here, similar arguments apply as for the Otto configuration. If the metal is too thin,
the SPP will be strongly damped because of radiation damping into the glass. If the
metal film is too thick the SPP can no longer be efficiently excited due to absorption
in the metal. Fig. 12.8 shows the reflectivity of the excitation beam as a function of
the metal film thickness and the angle of incidence. As before, the resonant excitation
of surface plasmons is characterized by a dip in the reflectivity curves.

It is worth mentioning that for the occurrence of a minimum in the reflectivity
curves in both the Otto and the Kretschmann configurations at least two (equivalent)
physical interpretations can be given. The first interpretation is that the minimum
can be thought of as being due to destructive interference between the totally reflected
light and the light emitted by the SPP due to radiation damping. In the second in-
terpretation, the missing light is assumed to having been totally converted to surface
plasmons at the interface which carry away the energy along the interface such that
it cannot reach the detector.
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Figure 12.9: Surface plasmons used in sensor applications. (a) Calculated shift of the
SPP resonance curve induced by a 3 nm layer of water (n=1.33) adsorbed on a 53 nm
silver film. (b) Intensity enhancement near the metal surface as a function of the
angle of incidence in the Kretschmann configuration. For silver (ε1 = −18.2 + 0.5i,
dash-dotted line) and gold (ε1 = −11.6 + 1.2i, solid line) at a wavelength of 633 nm
we observe a maximum intensity enhancement of ∼32 and ∼10, respectively.
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An alternative way to excite SPP is the use of a grating coupler [9]. Here, the
increase of the wave vector necessary to match the SPP momentum is achieved by
adding a reciprocal lattice vector of the grating to the free space wave vector. This
requires in principle that the metal surface is structured with the right periodicity a
over an extended spatial region. The new parallel wave vector then reads as k′

x = kx+
2πn/a with 2πn/a being a reciprocal lattice vector. A recent prominent application
of this SPP excitation principle was used to enhance the interaction of subwavelength
holes with SPP in silver films [14].

12.3.3 Surface plasmon sensors

The distinct resonance condition associated with the excitation of surface plasmons
has found application in various sensor applications. For example, the position of the
dip in the reflectivity curves can be used as an indicator for environmental changes.
With this method, the adsorption or removal of target materials on the metal surface
can be detected with submonolayer accuracy. Fig. 12.9 illustrates this capability by a
simulation. It shows the effect of a 3 nm layer of water on top of a 53 nm thick silver
film on glass. A strongly shifted plasmon resonance curve can be observed. Assuming
that the angle of incidence of the excitation beam has been adjusted to the dip in
the reflectivity curve, the deposition of a minute amount of material increases the
signal (reflectivity) drastically. This means that the full dynamic range of a low-noise
intensity measurement can be used to measure a coverage ranging between 0 and
3 nm. Consequently, SPP sensors are very attractive for applications ranging from
biological binding assays to environmental sensing. For reviews see e.g. [15, 16].

The reason for the extreme sensitivity lies in the fact that the light intensity
near the metal surface is strongly enhanced. In the Kretschmann configuration, this
enhancement factor can be determined by evaluating the ratio of the intensity above
the metal and the incoming intensity. In Fig. 12.9 (b) this ratio is calculated and
plotted as a function of the angle of incidence for both gold and silver for a 50 nm
thin film. A clear resonant behavior is again observed which reflects the presence of
the SPP.

12.4 Surface plasmons in nano-optics

Scanning near-field optical microscopy as well as fluorescence studies lead to new
ways of exciting SPP [17, 20, 19]. The parallel components of the wavevector (kx)
necessary for SPP excitation are also present in subwavelength confined optical near
fields in the vicinity of subwavelength apertures, metallic particles or even fluorescent
molecules. If such confined fields are brought close enough to a suitable interface,
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coupling to SPP can be accomplished locally. Fig. 12.10 shows the principal arrange-
ments. A metal film resides on a (hemispherical) glass prism to allow light (e.g. due
to radiation damping of the SPP) to escape and to be recorded. In order to excite
surface plasmons, the exciting light field needs to have evanescent field components
that match the parallel wavevector kx of the surface plasmon. As an illustration,
Fig. 12.11 (a) shows the excitation of surface plasmons with an oscillating dipole
placed near the surface of a thin silver film deposited on a glass surface. The figure
depicts contourlines of constant power density evaluated at a certain instant of time
and displayed on a logarithmic scale. The surface plasmons propagating on the top
surface decay radiatively as seen by the wavefronts in the lower medium. The situa-
tion is reciprocal to the situation of the Kretschmann configuration discussed earlier
where such radiation is used to excite surface plasmons. Also seen in Fig. 12.11 (a)
is the excitation of surface plasmons at the metal-glass interface. However, at the
wavelength of λ = 370nm, these plasmons are strongly damped and therefore do
not propagate long distance. Fig. 12.11 (b) shows the radiation pattern evaluated
in the lower medium (glass). It corresponds to the radiation collected with a high
numerical aperture lens and then projected on a photographic plate. The circle in the
center indicates the critical angle of total internal reflection of an air-glass interface
θc = arcsin(1/n), with n being the index of refraction of glass. Obviously, the plas-
mon radiates into an angle beyond θc. In fact, the emission angle corresponds to the
Kretschmann angle discussed previously (c.f. Fig. 12.8). Surface plasmons can only
be excited with p-polarized field components as there needs to be a driving force on
the free charges towards the interface. This is the reason why the radiation pattern
shows up as two lobes.
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Figure 12.10: Local excitation of surface plasmons on a metal film with different
confined light fields. (a) a subwavelength light source such as an aperture probe [17],
(b) an irradiated nanoparticle [18], and (c) fluorescent molecules [19]. In all cases,
surface plasmons are excited by evanescent field components that match the parallel
wavevector kx of the surface plasmon.
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The dipole is an ideal excitation source and more realistic sources used in practice
have finite dimensions. The size of the source and its proximity to the metal surface
determines the spatial spectrum that is available for the excitation of surface plas-
mons. If the source is too far from the metal surface only plane wave components of
the angular spectrum reach the metal surface and hence coupling to surface plasmons
is inhibited. Fig. 12.12 (a) shows a sketch of the spatial spectrum (spatial Fourier
transform) of a confined light source evaluated in planes at different distances from
the source (see inset). The spectrum is broad close to the source but narrows with
increasing distance from the source. The same figure also shows the spatial spec-
trum of a surface plasmon supported by a silver film. The excitation of the surface
plasmon is possible because of the overlap of the spatial spectrum of source and sur-
face plasmon. Due to the decrease in field confinement for increasing distance from
the source, a characteristic distance dependence for the surface plasmon excitation
efficiency is expected. As discussed before, in a thin film configuration, surface plas-
mon excitation can be monitored by observing the plasmon’s leakage radiation into
the glass half space. Fig. 12.12 (b) shows, for a thin gold and silver film deposited
on a glass hemisphere, the total intensity of surface plasmon leakage radiation as a
function of the distance between source (aperture) and the metal surface. The curve

(a) (b)

Figure 12.11: Excitation of surface plasmons with a dipole source placed 5nm above
a 50nm silver layer supported by a glass substrate. The excitation wavelength is
λ = 370nm and the dipole moment is parallel to the interface. (a) Lines of constant
power density (factor of 2 between successive contour lines) depicted at a certain
instant of time. The figure shows the surface plasmon propagation along the top
surface of the silver film and also the radiative decay into the lower half space. (b)
Radiation pattern evaluated on a horizontal plane in the lower medium. The circle
indicates the critical angle of total internal reflection at an air-glass interface. The
two lobes result from the radiative decay of surface plasmons excited by the dipole
source.
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labeled ’MMP’ indicates a numerical simulation. All curves clearly show a dip for
very small distances. This dip is likely due to the perturbation of the surface plasmon
resonance condition by the proximity of the probe, i.e. the coupling between probe
and sample (see also Fig. 12.7 as an illustration of this effect). For a source with
vanishing dimensions (a dipole) no such dip is observed.

The leakage radiation can also be used to visualize the propagation length of
surface plasmons. This is done by imaging the metal/glass interface onto a camera
using a high NA microscope objective that can capture the leakage radiation above
the critical angle (see Fig. 12.12 c). The extension of the SPP propagation is in
good agreement with Eq. (12.17). The effect of a changing gap width and the effect
of changing the polarization can be used to control the intensity and the direction
in which surface plasmons are launched.While the excitation of surface plasmons
in Fig. 12.12 has been accomplished with a near-field aperture probe, the example
in Fig. 12.13 shows the same experiment but with a laser-irradiated nanoparticle
acting as excitation source. In this experiment, the surface plasmon propagation is
visualized by the fluorescence intensity of a thin layer of fluorophores deposited on
the metal surface. A double-lobed emission pattern is observed due to the fact that
surface plasmons can only be excited by p-polarized field components of the near-field.
Control over the direction of emission is possible via the choice of the polarization of
the excitation beam [20].

The coupling of fluorophores to surface plasmons can drastically improve the sen-

k||

0

S3

S2

S1

SPP

1
2
3

(a)

0 100k0 kSPP 200 300

gap width [nm]

s
ig
n
a
l

Au

MMP

Ag

(b)

lateral wave vector

a
m
p
lit
u
d
e

10 mμ

E

(c)

Figure 12.12: Local excitation of surface plasmons with a near-field aperture probe.
(a) Sketch of the overlap of the spatial spectra of source (evaluated in planes at differ-
ent distances from the source) and the surface plasmon on a silver film. (b) Distance-
dependence of the coupling. The dip at short distances is a result of probe-sample
coupling, i.e. the presence of the probe locally modifies the plasmon resonance con-
dition. (c) Image of plasmon propagation recorded by focusing the leakage radiation
on an image plane.
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sitivity of fluorescence-based assays in medical diagnostics, biotechnology and gene
expression. For finite distances between metal and fluorophores (<200 nm) the cou-
pling to surface plasmons leads to strong fluorescence signal enhancement and high
directionality of the emission. For example, an immunoassay for the detection of the
cardiac marker myoglobin has been developed in Ref. [22].An interplay between sur-
face plasmons launched by an aperture probe and surface plasmons excited by particle
scattering has been studied in Ref. [17]. Fig. 12.14 shows experimentally recorded sur-
face plasmon interference patterns on a smooth silver film with some irregularities.
The periodicity of the fringes of 240±5 nm is exactly half the surface plasmon wave-
length. The contrast in this image is obtained by recording the intensity of the leakage
radiation as the aperture probe is raster scanned over the sample surface. Thus, the
fringes are due to surface plasmon standing waves that build up between the probe
and the irregularities that act as scattering centers. Strongest leakage radiation is
obtained for probe-scatterer distances that are integer multiples of half the surface
plasmon wavelength.

The observation that surface plasmons originating from different scattering centers
on a surface can interfere, suggests the possibility of building optical elements for sur-
face plasmon nano-optics [23-25]. Today the field of ’plasmonics’ covers such research
activities. Of particular interest in this context is the development of plasmon-based
waveguiding structures that allow for transport and manipulation of light at sub-
wavelength scales. Several recent experiments have demonstrated the use of surface

(a) (b)

Figure 12.13: Excitation of surface plasmons by a subwavelength-scale protrusion
located on the top surface of a metal film. (a) Setup, (b) Close up of the particle-
beam interaction area. In this experiment, the surface plasmons are detected by the
fluorescence intensity of a thin layer of fluorescent molecules deposited on a dielectric
spacer layer. From [20].
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plasmons in waveguiding applications [26]. To measure the intrinsic damping of the
waveguides, radiation losses have to be eliminated which is accomplished by preparing
the waveguide using a sandwich structure of glass, aluminum, SiO2, and gold [26].
As an example, Fig. 12.15(a) shows a near-field measurement of a surface plasmon
waveguide recorded by photon scanning tunneling microscopy (PSTM) (see chapter
5). Surface plasmon reflection at the end of the waveguide leads to a standing wave
pattern which can be evaluated to measure e.g. the surface plasmon wavelength. The
figure demonstrates that surface plasmon propagation can extend over several µm
underlining their potential use in future subwavelength integrated optical devices.
For comparison, Fig. 12.15(b) shows the results of a simulation for an even thinner
waveguide [27]. Similar qualitative features are observed.

12.4.1 Plasmons supported by wires and particles

For surface plasmon polaritons propagating on plane interfaces we observed that the
electromagnetic field is strongly localized in one dimension, i.e. normal to the interface.
In the context of nano-optics we are also interested in establishing field confinement
in two or even three dimensions. Therefore it is useful to theoretically analyze the
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Figure 12.14: Interference of locally excited surface plasmons. Right panel: Inte-
grated leakage radiation from a silver film with some protrusions recorded as an
aperture probe is raster-scanned over the sample surface. The fringes correspond to
surface plasmon standing wave patterns that build up between the protrusions and
the aperture probe. Left panel: Shear-force topography of the area shown in the op-
tical image and line cuts along the white line through both, topography and optical
image.
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electromagnetic modes associated with thin wires and small particles. In order to
keep the analysis simple, we will limit the discussion to the quasi-static approximation
which neglects retardation. Thus, it is assumed that all points of an object respond
simultaneously to an incoming (excitation) field. This is only true if the characteristic
size of the object is much smaller than the wavelength of light. In the quasi-static
approximation the Helmholtz equation reduces to the Laplace equation which is much
easier to solve. A detailed discussion can be found e.g. in [28]. The solutions that
are obtained here are the quasi-static near-fields and scattering cross-sections of the
considered objects. For example, the electric field of an oscillating dipole

E(rn, t) =
1

4πε0

[

k2(n × µ) × n
eikr

r
+ [3n(n · µ) − µ]

(

1

r3
−

ik

r2

)

eikr

]

eiωt (12.27)

with µ denoting the dipole moment, can be approximated in the near-field zone
kr & 1 as

E(rn, t) =
1

4πε0
[3n(n · p) − p]

eiωt

r3
(12.28)

which is exactly the electrostatic field of a point dipole, only that it oscillates in time
with eiωt, which is the reason why it is termed quasi -static. In the quasi-static limit
the electric field can be represented by a potential as E = −∇Φ. The potential has

(a) (b)

Figure 12.15: SPP waveguides. (a) Propagation, reflection and interference of surface
plasmons guided by a gold nanowire with a width of λ/4 with λ=800 nm. Left: shear-
force topography, right: optical image recorded with a photon scanning tunneling
microscope (PSTM). From [26] without permission. (b) Simulation of surface plasmon
propagation on a finite length gold rod showing a similar standing wave pattern. Scale
bar 1 µm. From [27] without permission.
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to satisfy the Laplace equation

∇2Φ = 0 (12.29)

and the boundary conditions between adjacent materials (see chapter 2). In the fol-
lowing we will analyze the solutions of (12.29) for a thin metal wire and a small metal
particle, respectively.

Plasmon resonance of a thin wire

Let us consider a thin cylindrical wire with radius a centered at the origin and ex-
tending along the z-axis to infinity. The wire is illuminated by an x-polarized plane
wave. The geometry is sketched in Fig. 12.17. To tackle this problem we introduce
cylindrical coordinates

x = ρ cosϕ

y = ρ sinϕ

z = z (12.30)

and express the Laplace equation in a cylindrical coordinate system as

1

ρ

∂

∂ρ

(

ρ
∂Φ

∂ρ

)

+
1

ρ2

(

∂2Φ

∂ϕ2

)

= 0 . (12.31)

Figure 12.16: Near-field distribution around a gold wire in the quasi-static limit at a
wavelength of 633 nm.
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Here, we have accounted for the fact that there is no z-dependence. The Laplace
equation (12.31) can be separated using the Ansatz Φ(ρ, ϕ) = R(ρ)Θ(ϕ) yielding

1

R

(

ρ
∂

∂ρ

(

ρ
∂R

∂ρ

))

= −
1

Θ

(

∂2Θ

∂ϕ2

)

≡ m2 . (12.32)

The angular part has solutions of the form

Θ(ϕ) = c1 cos(mϕ) + c2 sin(mϕ) (12.33)

which implies for the present problem that m must be an integer to ensure the 2π
periodicity of the solution. The radial part has solutions of the form

R(ρ) = c3ρ
m + c4ρ

−m, m > 0

R(ρ) = c3 ln ρ + c4, m = 0 (12.34)

with the same m as introduced in (12.32).Because of the symmetry imposed by the
polarization of the exciting electric field (x-axis) only cos(mϕ) terms need to be con-
sidered. Furthermore, the ln solution for m = 0 in (12.34) has to be rejected because
it leads to a diverging field at the origin and at infinity. We therefore use the following
expansion

Φ(ρ < a) = Φ1 = Σ∞
n=1αnρ

n cos(nϕ), (12.35)

Φ(ρ > a) = Φ2 = Φscatter + Φ0 = Σ∞
n=1βnρ

−n cos(nϕ) − E0ρ cos(ϕ)

where αn and βn are constants to be determined from the boundary conditions on
the wire surface ρ = a. In terms of the potential Φ the boundary conditions read as

[

∂Φ1

∂ϕ

]

ρ=a

=

[

∂Φ2

∂ϕ

]

ρ=a

ε1

[

∂Φ1

∂ρ

]

ρ=a

= ε2

[

∂Φ2

∂ρ

]

ρ=a

(12.36)
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Figure 12.17: Cut through a thin wire that is illuminated by an x-polarized plane
wave.
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which follows from the continuity requirement for the tangential component of the
electric field and the normal component of the electric displacement. Here, ε1 and ε2

are the complex dielectric constants of the wire and the surrounding, respectively. In
order to evaluate (12.36) we use the fact that the functions cos(nϕ) are orthogonal.
Introducing (12.35) into (12.36) we immediately see that αn and βn vanish for n > 1.
For n = 1 we obtain

α1 = −E0
2ε2

ε1 + ε2
, β1 = a2E0

ε1 − ε2

ε1 + ε2
. (12.37)

With these coefficients the solution for the electric field turns out to be

E1 = E0
2ε2

ε1 + ε2
ex (12.38)

E2 = E0ex + E0
ε1 − ε2

ε1 + ε2

a2

ρ2

(

1 − 2 sin2 ϕ
)

ex + 2E0
ε1 − ε2

ε1 + ε2
a2 sinϕ cosϕ ey

(12.39)

where we re-introduced Cartesian coordinates.

In most applications the dispersion (frequency dependence) of the dielectric medium
surrounding the metal can be ignored and one can assume a constant ε2. On the other
hand, the metal’s dielectric function is strongly wavelength dependent.The solution
for the fields is characterized by the denominator ε1 + ε2. Consequently, the fields di-
verge when ε1(λ) = −Re(ε2). This is the resonance condition for a collective electron
oscillation in a wire that is excited by an electric field polarized perpendicular to the
wire axis. The shape of the resonance is determined by the dielectric function ε1(λ).
Similar to the case of the plane interface discussed earlier, changes in the dielectric
constant of the surrounding medium (ε2) lead to shifts of the resonance (see below).
Notice, that no resonances exist if the electric field is polarized along the wire axis.
As in the plane interface case, the excitation of surface plasmons relies on a surface
charge accumulation at the surface of the wire. In order to drive the charges to the
interface the electric field needs to have a polarization component normal to the metal
surface.

To understand surface plasmon propagation along a cylindrical wire one needs to
solve the full vector wave equation. Such an analysis has been done in Ref. [30] for
solid metal wires and for hollow metal wires. An interesting outcome of this study
is that energy can be coupled adiabatically from guided modes propagating inside a
hollow metal waveguide to surface modes propagating on the outside of the waveguide.
The propagation along the wire axis z is determined by the factor

exp[i(kzz − ωt)] , (12.40)

where kz = β + iα is the complex propagation constant. β and α are designated as
phase constant and attenuation constant, respectively. For the two best propagating
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surface modes, Fig. 12.18 a) shows the propagation constant of an aluminum cylinder
as a function of the cylinder radius a. The TM0 mode exhibits a radial polariza-
tion, i.e. the electrical field is axially symmetric. On the other hand, the HE1 mode
has a cosϕ angular dependence and, as the radius a tends to zero, it converts to an
unattenuated plane wave (kz ≈ ω/c) that is infinitely extended. The situation is dif-
ferent for the TM0 mode. As the radius a is decreased, its phase constant β becomes
larger and the transverse field distribution becomes better localized. However, also
the attenuation constant α increases and hence for too thin wires the surface plasmon
propagation length becomes very small. Recently, it has been pointed out that both
the phase velocity and the group velocity of the TM0 mode tend to zero as the diam-
eter a is decreased [31]. Therefore, a pulse propagating along a wire whose diameter
is adiabatically thinned down never reaches the end of the wire, i.e. it’s tip. Notice,
that modes propagating on the surface of a metal wire have already been character-
ized in 1909 [32]. It was realized that single wires can transport energy almost free
of losses but at the expense of having poor localization, i.e. the fields extend in the
surrounding medium over very large distances. Therefore, transmission lines consist
of two or more wires.
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Figure 12.18: (a) Propagation constant kz = β + iα of the two lowest surface modes
supported by an aluminum wire at a wavelength of λ = 488 nm. a denotes the
wire diameter and ko = ω/c. (b)Frequency dispersion of the HE1 surface mode of
a a = 50nm aluminum wire. ωp denotes the plasma frequency of aluminum. The
dotted line indicates the corresponding dispersion on a plane interface. Notice the
backbending effect discussed earlier.
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Plasmon resonance of a small spherical particle

The plasmon resonance for a small spherical particle of radius a in the electrostatic
limit can be found in much a similar way as for the thin wire. Here, we have to
express the Laplace equation (12.29) in spherical coordinates (r, θ, ϕ) as

1

r2 sin θ

[

sin θ
∂

∂r

(

r2 ∂

∂r

)

+
∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin θ

∂2

∂ϕ2

]

Φ(r, θ, ϕ) = 0 . (12.41)

The solutions are of the form

Φ(r, θ, ϕ) = Σl,m bl,m · Φl,m(r, θ, ϕ) . (12.42)

Here, the bl,m are constant coefficients to be determined from the boundary conditions
and the Φl,m are of the form

Φl,m =

{

rl

r−l−1

}{

Pm
l (cos θ)

Qm
l (cos θ)

}{

eimϕ

e−imϕ

}

(12.43)

where the Pm
l (cos θ) are the associated Legendre functions and the Qm

l (cos θ) are
the Legendre functions of the second kind [29]. Linear combinations of the functions
in the upper and the lower row of (12.43) may have to be chosen according to the
particular problem to avoid infinities at the origin or at infinite distance. Again, the
continuity of the tangential electric fields and the normal components of the electric
displacements at the surface of the sphere imply that

[

∂Φ1

∂θ

]

r=a

=

[

∂Φ2

∂θ

]

r=a

ε1

[

∂Φ1

∂r

]

r=a

= ε2

[

∂Φ2

∂r

]

r=a

. (12.44)

Here, Φ1 is the potential inside the sphere and Φ2 = Φscatter + Φ0 is the potential
outside the sphere consisting again of the potentials of the incoming and the scattered
fields. For the incoming electric field we assume, as for the case of the wire, that it
is homogeneous and directed along the x-direction. Consequently, Φ0 = −E0x =
−E0rP 0

1 (cos(θ)). Evaluation of the boundary conditions leads to

Φ1 = −E0
3ε2

ε1 + 2ε2
r cos θ

Φ2 = −E0r cos θ + E0
ε1 − ε2

ε1 + 2ε2
a3 cos θ

r2
(12.45)

( see problem 12.7 and e.g. [4]). The most important difference to the solution for the
wire is the distance dependence 1/r2 as compared to 1/r and the modified resonance
condition with ε2 multiplied by a factor of 2 in the denominator. It is also important
to note, that the field is independent of the azimuth angle ϕ, which is a result of the
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symmetry implied by the direction of the applied electric field.Finally, the electric
field can be calculated from (12.45) using E = −∇Φ and turns out to be

E1 = E0
3ε2

ε1 + 2ε2
(cos θ er − sin θ eθ) = E0

3ε2

ε1 + 2ε2
ex (12.46)

E2 = E0(cos θ er − sin θ eθ) +
ε1 − ε2

ε1 + 2ε2

a3

r3
E0 (2 cos θ er + sin θ eθ) .(12.47)

The field distribution near a resonant gold or silver nanoparticle looks qualitatively
similar as the plot shown in Fig. 12.16 for the case of the thin wire. On resonance
the field is strongly localized near the surface of the particle. An interesting feature
is that the electric field inside the particle is homogeneous. For metal particles this
is an unexpected result as we know that electromagnetic fields decay exponentially
into metals. Consequently, the quasi-static approximation is only valid for particles
that are smaller in size than the skin depth d of the metal (d = λ/[4π

√
ε]). Another

important finding is that the scattered field [second term in (12.47)] is identical to
the electrostatic field of a dipole µ located at the center of the sphere. The dipole is
induced by the external field E0 and has the value µ = ε2α(ω)E0, with α denoting
the polarizability‡

α(ω) = 4πεoa
3 ε1(ω) − ε2

ε1(ω) + 2ε2
. (12.48)

This relationship can be easily verified by comparison with Eq. (12.28). The scattering
cross-section of the sphere is then obtained by dividing the total radiated power of
the sphere’s dipole (see e.g. chapter 8) by the energy density of the exciting plane
wave. This results in

σscatt =
k4

6πε2
o

|α(ω)|2 , (12.49)

with k being the wavevector in the surrounding medium. Notice that the polarizability
(12.48) violates the optical theorem in the dipole limit, i.e. scattering is not accounted
for. This inconsistency can be corrected by allowing the particle to interact with itself
(radiation reaction). As discussed in problem 8.5, the inclusion of radiation reaction
introduces an additional term to (12.48). See also problem 15.4.

Fig. 12.19 shows plots of the normalized scattering cross-section of 20 nm radius
gold and silver particles in different media. Note that the resonance for the silver
particles is in the ultraviolet spectral range while for gold the maximum scattering
occurs around 530 nm. A redshift of the resonance is observed if the dielectric constant
of the environment is increased.

‡Notice, that we use dimensionless (relative) dielectric constants, i.e. the vacuum permeability
εo is not contained in ε2.
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The power removed from the incident beam due to the presence of a particle is
not only due to scattering but also due to absorption. The sum of absorption and
scattering is called extinction. Therefore, we also need to calculate the power that is
dissipated inside the particle. Using Poynting’s theorem we know that the dissipated
power by a point dipole is determined as Pabs = (ω/2) Im [µ · E∗

0]. Using µ = ε2αE0,
with ε2 being real, and the expression for the intensity of the exciting plane wave in
the surrounding medium, we find for the absorbtion cross-section

σabs =
k

εo
Im [α(ω)] . (12.50)

Again, k is the wavevector in the surrounding medium. It turns out that σabs scales
with a3 whereas σscatt scales with a6. Consequently, for large particles extinction is
dominated by scattering whereas for small particles it is associated with absorption.
This effect can be used to detect extremely small metal particles down to 2.5 nm
diameter which are used as labels in biological samples [33]. The transition between
the two size regimes is characterized by a distinct color change. For example, small
gold particles absorb green and blue light and thus render a red color. On the other
hand, larger gold particles scatter predominantly in the green and hence render a
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Figure 12.19: Plots of the scattering cross-section of spherical gold and silver particles
in different environments normalized by a6, with a denoting the particle radius. In the
current example, a=20 nm. Solid line: vacuum (n=1). Dashed line: water (n=1.33).
Dash-dotted line: glass (n=1.5).
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greenish color. A very nice illustration of these findings are colored glasses. The
famous Lycurgus cup shown in Fig. 12.20 was made by ancient roman artists and is
today exhibited at the British Museum, London. When illuminated by a white source
from behind, the cup shows an amazingly rich shading of colors ranging from deep
green to bright red. For a long time it was not clear what causes these colors. Today
it is known that they are due to nanometer-sized gold particles embedded in the glass.
The colors are determined by an interplay of absorption and scattering.

Local interactions with particle plasmons

The resonance condition of a particle plasmon depends sensitively on the dielectric
constant of the environment. Thus, similar to the case of a plane interface, a gold or
silver particle can be used as a sensing element since its resonance will shift upon local
dielectric changes, e.g. due to the specific binding of certain ligands after chemical
functionalization of the particle’s surface. The advantage of using particle resonances
as opposed to resonances of plane interfaces is associated with the much smaller
dimensions of the particle and hence the larger surface to volume ratio. One can
envision to anchor differently functionalized particles onto substrates at extremely
high densities and use such arrangements as sensor chips for multiparameter sensing
of various chemical compounds, as demonstrated by the detection of single base pair
mismatches in DNA (see e.g. [34]).Resonance shifts of small noble metal particles

Figure 12.20: Ancient roman Lycurgus cup illuminated by a light source from be-
hind. Light absorption by the embedded gold particles leads to a red color of the
transmitted light whereas scattering at the particles yields a greenish color. From
http://www.thebritishmuseum.ac.uk/ science/lycurguscup/sr-lycugus-p1.html.
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were also applied in the context of near-field optical microscopy. The observation of
the resonance shift of a metal particle as a function of a changing environment was
already demonstrated by Fischer and Pohl in 1989 [35]. Similar experiments were
performed later using gold particles attached to a tip [36]. The type of setup and the
particular probe used is discussed in more detail in chapter 6.

12.4.2 Plasmon resonances of more complex structures

Because of their high symmetry, simple structures such as isolated small spheres
exhibit a single plasmon resonance. However, more complex structures often yield
multi-featured resonance spectra and strongly enhanced local fields in gaps between
or at intersection points of different particles [41]. Simple arguments can be applied
to provide a qualitative understanding of more complex plasmon resonances and their
geometrical dependence. In fact, plasmon resonances of complex structures can be
viewed as the result of a ”hybridization” of elementary plasmons of simpler substruc-
tures [37]. To give an example, consider the resonances of a hollow metallic shell as
shown in Fig. 12.21 (a). The elementary resonances of this particle are found by de-
composition into a solid metal sphere and a spherical cavity in bulk metal. Fig. 12.21
(b) shows how the elementary modes can be combined to form hybrids. A low energy
(red-shifted) hybrid mode is obtained for an in-phase oscillation of the elementary
plasmons whereas the anti-phase combination represents a higher-energy mode that
is blue-shifted. The degree of interaction between the elementary modes is determined
by the spatial separation of the modes (shell thickness) [42].

Similar considerations can be adopted to understand the multiple plasmon reso-
nances that occur for asymmetric particles such as e.g. pairs of metal particles. Here,
besides the hybridization effect, different resonances can occur for different directions
of polarization of the excitation light. For example, consider a pair of spherical par-
ticles as sketched in Fig. 12.22 (a)-(c). The elementary plasmon resonance (a) is
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Figure 12.21: Generation of multi-featured surface plasmon resonances by hybridiza-
tion of elementary modes for the example of a gold nanoshell [37]. (a) Elementary
structures, (b) Energies of elementary and hybridized modes.
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hybridized when two particles are sufficiently close such that the dipole of one par-
ticle induces a dipole in the other particle. Possible hybrid modes of the combined
structure are sketched in Fig. 12.22 (b) and (c). For different polarizations, different
modes of the system are excited which may shift to lower or higher energies for in-
creased coupling. For example, the low energy modes of Fig. 12.22 (b) and (c) shift
to the red, respectively to the blue, for decreasing inter particle distances. This is
because for decreasing distance in the first case the opposite charges close to the gap
reduce the energy of the configuration whereas in the second case the overall energy
(Coulomb repulsion) is increased [43, 44].

In a similar manner the multi-featured resonances of single asymmetric and complex-
shaped particles can be understood. Fig. 12.22 (d) shows simulated field distributions
at the resonance frequency near a metallic nanowire with triangular cross-section
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Figure 12.22: Shape effects in particle plasmon resonances. (a) Elementary mode of a
spherical particle. The arrow indicates the polarization direction of the exciting field.
(b),(c) Surface charge distributions of hybrid plasmon modes associated with particle
pairs. The polarization direction is perpendicular (b) and parallel (c) to the long
axis of the particle axis. (d) Near-field distribution of resonant silver nanowires with
triangular cross-sections. The polarization direction is indicated by white arrows. (e)
Scattering spectra corresponding to the distributions shown in (d). From [38] without
permission. (f) and (g) show AFM images of triangular resonant silver particles
created by nanosphere lithography used for the detection of Alzheimer’s disease. (g)
is without attached antibodies and (f) is with attached antibodies. From [39] without
permission.
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when illuminated from different directions indicated by the white arrows [38]. The
resulting scattering spectra are displayed in Fig. 12.22 (e). As expected from the
two-particle model discussed before, the resonance region for excitation in direction
1 (black spectrum) is red-shifted with respect to the resonance region obtained for
excitation along direction 2 (green spectrum).Triangular-shaped silver particles show
very high sensitivity of their spectral properties to changes of the dielectric constant
of their environment. Fig. 12.22 (f) and (g) show AFM images of triangular silver
patches created by nanosphere lithography [45, 46]. Upon attachment of specific an-
tibodies (g) the resonance of the particle shifts notably [39] which can be exploited
for sensitive detection of minute amounts of analyte.An important problem in ’plas-
monics’ is the question of how metal particles should be designed and arranged with
respect to each other to produce the strongest possible field enhancement.

One possible solution to this problem is the configuration of a self-similar chain
of particles with decreasing diameters [40] as depicted in Fig. 12.23. Self similarity
requires that radii Ri and the distances di,i+1 of the spheres i and i+1 are connected
by the simple relations Ri+1 = κRi and di+1,i+2 = κdi,i+1 where κ & 1. The last con-
dition ensures that the field of a given nanoparticle is only a weak perturbation of the
previous, bigger particle. The self-similarity is not a necessary condition but it allows
for an elegant notation. All particles are considered in the electrostatic limit. Now, if

Figure 12.23: Self-similar chain of metallic nanoparticles. A very strong resonance
is observed for an excitation wavelength of λ = 381.5 nm. The associated field en-
hancement in the gap between the two smallest spheres is larger than 1000. From
[40] without permission.
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each of the particles enhances its driving field by a certain factor α, then the cumula-
tive effect of the chain of particles is a field enhancement on the order of αn where n
is the number of particles. In other words, the enhanced field of the largest particle
acts as an excitation field for the next smaller particle. The resulting enhanced field
of this second particle then acts as the excitation field for the next smaller particle,
and so on. For the system depicted in Fig. 12.23, assuming a moderate α ∼ 10, leads
to a total field enhancement of ∼1000 [40]. As we will see in the following section,
field enhancements of at least 1000 are necessary to observe the Raman scattering of
single molecules adsorbed onto rough metal structures.

12.4.3 Surface-enhanced Raman scattering

The energy spectrum of molecular vibrations can serve as an unambiguous charac-
teristic fingerprint for the chemical composition of a sample. Due to its sensitivity to
molecular vibrations, Raman scattering spectroscopy is a very important tool for the
analysis of nanomaterials. Raman scattering is named after Sir Chandrasekhara V.
Raman who first observed the effect in 1928 [47]. Raman scattering can be viewed as a
mixing process similar to amplitude modulation used in radio signal transmission: the
time-harmonic optical field (the carrier) is mixed with the molecular vibrations (the
signal). This mixing process gives rise to scattered radiation that is frequency-shifted
from the incident radiation by an amount that corresponds to the vibrational frequen-
cies of the molecules (ωvib). The vibrational frequencies originate from oscillations
between the constituent atoms of the molecules and, according to quantum mechan-
ics, these oscillations persist even at ultralow temperatures. Because the vibrations
depend on the particular molecular structure the vibrational spectrum constitutes a
characteristic fingerprint of a molecule. A formal description based on quantum elec-
trodynamics can be found in Ref. [48]. Fig. 12.24 shows the energy level diagrams for
Stokes and anti-Stokes Raman scattering together with an experimentally measured
spectrum for Rhodamine 6G.

It is not the purpose of this section to go into the details of Raman scattering but
it is important to emphasize that Raman scattering is an extremely weak effect. The
Raman scattering cross-section is typically 14 − 15 orders of magnitude smaller than
the fluorescence cross-section of efficient dye molecules. The field enhancement asso-
ciated with surface plasmons, as described above, has hence been extensively explored
for increasing the interaction-strength between a molecule and optical radiation. The
most prominent example is surface enhanced Raman scattering (SERS).

In 1974 it was reported that the Raman scattering cross-section can be consider-
ably increased if the molecules are adsorbed on roughened metal surfaces [49]. In the
following decades SERS became an active research field [50]. Typical enhancement
factors for the Raman signal observed from rough metal substrates as compared to
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bare glass substrates are on the order of 106 − 107, and using resonance enhancement
(excitation frequency near an electronic transition frequency) enhancement factors
as high as 1012 have been reported. The determination of these enhancement fac-
tors was based on ensemble measurements. However, later two independent single
molecule studies reported giant enhancement factors of 1014 [51, 52]. These studies
not only shed new light on the nature of SERS but made Raman scattering as effi-
cient as fluorescence measurements (cross-sections of ≈ 10−16cm2). The interesting
outcome of these single molecule studies is that the average enhancement factor coin-
cides with previous ensemble measurements, but while most of the molecules remain
unaffected by the metal surface only a few make up for the detected signal. These
are the molecules with the giant enhancement factors of 1014. These molecules are
assumed to be located in a favorable local environment (hot spots) characterized by
strongly enhanced electric fields.

Despite all the activity in elucidating the physical principles underlying SERS,
a satisfactory theory explaining the fundamental origin of the effect is still missing.
It is accepted that the largest contribution to the giant signal enhancement stems
from the enhanced electric fields at rough metal surfaces. Highest field enhancements
are found in junctions between metal particles or in cracks on surfaces (see e.g. [51,
41]). It is commonly assumed that the Raman scattering enhancement scales with the
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Figure 12.24: Raman scattering refers to the spectroscopic process in which a molecule
absorbs a photon with frequency ω and subsequently emits a photon at a different
frequency ωR which is offset with respect to ω by a vibrational frequency ωvib of the
molecule, i.e. ωR = ω±ωvib. Absorption and emission are mediated by a virtual state,
i.e. a vacuum state that does not match any molecular energy level. (a) If ω > ωR

one speaks of Stokes Raman scattering, and (b) if ω < ωR the process is designated
as anti-Stokes Raman scattering. (c) Raman scattering spectrum representing the
vibrational frequencies of Rhodamine 6G. The spectrum is expressed in wavenumbers
νvib(cm−1) = [1/λ(cm)]−[1/λR(cm)], with λ and λR being the wavelengths of incident
and scattered light, respectively.



442 CHAPTER 12. SURFACE PLASMONS

fourth power of the electric field enhancement factor. At first glance this seems odd as
one would expect that this implies that Raman scattering is a nonlinear effect scaling
with the square of the excitation intensity. However, this is not so. In the following
we will provide a qualitative explanation based on a scalar phenomenological theory.
It is straightforward to rigorously expand this theory but the mathematical details
would obscure the physical picture. Notice, that the theory outlined in the following
is not specific to Raman scattering but applies also to any other linear interaction
such as Rayleigh scattering and fluorescence.§
Let us consider the situation depicted in Fig. 12.25. A molecule located at ro is placed
in the vicinity of metal nanostructures (particles, tips, .. ) that act as a local field
enhancing device. The interaction of the incident field Eo with the molecule gives rise
to a dipole moment associated with Raman scattering according to

µ(ωR) = α(ωR, ω) [Eo(ro, ω) + Es(ro, ω)] , (12.51)

where ω is the frequency of the exciting radiation and ωR is a particular vibrationally
shifted frequency (ωR = ω ± ωvib). The polarizability α is modulated at the vibra-
tional frequency ωvib of the molecule and gives rise to the frequency mixing process.
The molecule is interacting with the local field Eo + Es, where Eo is the local field
in absence of the metal nanostructures and Es is the enhanced field originating from
the interaction with the nanostructures (scattered field). Es depends linearly on the
excitation field Eo and hence it can be qualitatively represented as f1(ω)Eo, with f1

designating the field enhancement factor.

The electric field radiated by the induced dipole µ can be represented by the sys-
tem’s Green’s function G, which accounts for the presence of the metal nanostructures,

§In case of fluorescence, one needs to take into account that the excited-state lifetimes can be
drastically reduced near metal surfaces.

ER (ωR)
μ

ro r∞

rʻ

Eo (ω)

α

Figure 12.25: General configuration encountered in surface enhanced spectroscopy.
The interaction between a molecule with polarizability α and the exciting field Eo

gives rise to a scattered field ER. Placing metal nanostructures (coordinate r′) near
the molecule enhances both the exciting field and the radiated field.



12.4. SURFACE PLASMONS IN NANO-OPTICS 443

as

E(r∞, ωR) =
ω2

R

εoc2
G(r∞, ro)µ(ωR) =

ω2
R

εoc2
[Go(r∞, ro) + Gs(r∞, ro)]µ(ωR) .

(12.52)
Similar to the case of the exciting local field, we split the Green’s function into a free-
space part Go (absence of metal nanostructures) and a scattered part Gs originating
from the interaction with the metal nanostructures. We represent Gs qualitatively as
f2(ωR)Go, with f2 being a second field enhancement factor.

Finally, combining Eqs. (12.51) and (12.52), using the relations Es = f1(ω)Eo,
and Gs = f2(ωR)Go, and calculating the intensity I ∝ |E|2 yields

I(r∞, ωR) =
ω4

R

ε2
oc

4

∣

∣

∣
[1 + f2(ωR)]Go(r∞, ro)α(ωR, ω) [1 + f1(ω)]

∣

∣

∣

2
Io(ro, ω) . (12.53)

Thus, we find that the Raman scattered intensity scales linearly with the excitation
intensity Io and that it depends on the factor

∣

∣

∣
[1 + f2(ωR)][1 + f1(ω)]

∣

∣

∣

2
. (12.54)

In absence of any metal nanostructures, we obtain the scattered intensity by setting
f1 = f2 = 0. On the other hand, in presence of the nanostructures we assume that
f1, f2 * 1 and hence the overall Raman scattering enhancement becomes

fRaman =
∣

∣

∣
f2(ωR)

∣

∣

∣

2
∣

∣f1(ω)
∣

∣

∣

2
, (12.55)

Provided that |ωR ± ω| is smaller than the spectral response of the metal nanostruc-
ture the Raman scattering enhancement scales roughly with the fourth power of the
electric field enhancement. It should be kept in mind that our analysis is qualita-
tive and it ignores the vectorial nature of the fields and the tensorial properties of
the polarizability. Nevertheless, a rigorous self-consistent formulation along the here
outlined steps is possible. Besides the described field enhancement mechanism, addi-
tional enhancements associated with SERS are a short-range ’chemical’ enhancement
which results from the direct contact of the molecule with the metal surface. This
direct contact results in a modified ground-state electronic charge distribution which
gives rise to a modified polarizability α. Further enhancement can be accomplished
through resonant Raman scattering for which the excitation frequency is near an elec-
tronic transition frequency of the molecule, i.e. the virtual levels shown in Fig. 12.24
come close to an electronic state of the molecule.

Over the past decades, a lot of effort has been dedicated to SERS but the progress
has been challenged by the experimental difficulties associated with the fabrication of
well-defined and reproducible metal nanostructures. New developments in nanofab-
rication and characterization and the availability of sensitive instrumentation that
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allow us to study a single molecule at a time promise that the SERS puzzle be re-
solved in the near future.

12.5 Conclusion

In this chapter we have discussed the basic properties of surface plasmons. We have
pointed out the nature of these modes as being a hybrid between local optical fields
and associated electron density waves in a metal. As nano-optics in general deals with
optical fields in the close vicinity of (metallic) nanostructures it is obvious that such
collective excitations play a major role in the field. There exist many applications
and prospects of surface plasmons that we could not mention here. The study of
plasmons on metal nanostructures has developed into a research field of its own called
”plasmonics”. For more information, the interested reader is referred to e.g. [53-55]
and references therein.
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Problems

Problem 12.1 Study the effect of a complex dielectric function on the propagation of
a plane wave. What happens if a plane wave isnormally incident on a metal interface?

Problem 12.2 Show that for an Ansatz similar to Eq. (12.11), however, with s-
polarized waves, a reflected wave has to be added to fulfill the boundary conditions
and Maxwell’s equations simultaneously.

Problem 12.3 Show that if we do not demand the solution to be a surface wave,
i.e. if the perpendicular wave vector, Eq. (12.18), may be real, then we arrive at the
well known condition for the Brewster effect.

Problem 12.4 Write a small program that plots the reflectivity of a system of (at
least up to 4) stratified layers as a function of the angle of incidence using the notation
of (12.14). Study a system consisting of glass, gold, and air with a thickness of the
gold layer of about 50 nm between an glass and a gold half space. Plot the reflectivity
for light incident from the glass side and from the air side. What do you observe?
Study the influence of thin layers of additional materials on top or below the gold. A
few nanometers of Titanium or Chromium are often used to enhance the adhesion of
gold to glass. What happens if a monolayer of proteins (∼5 nm in diam., refractive
index ∼1.33) is adsorbed on top of the gold layer?

Hint
Consider a stratified layer of thickness d (medium 1) between 2 homogeneous half
spaces (medium 0 and 2). According to (12.14) the fields in each medium for p-
polarization read as

E0 = E+
0







1
0

− kx
k0,z






eik0,zz + E−

0







1
0
kx
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




e−ik0,zz (12.56)
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E2 = E+
2


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1
0

− kx
k2,z






eik2,z(z−d) (12.58)

Exploiting the continuity of E‖ and D⊥ yield after some manipulation

(

E+
0

E−
0

)

=
1

2

(

1 + κ1η1 1 − κ1η1

1 − κ1η1 1 + κ1η1

)(

1 0
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)(
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1

E−
1

)

(12.59)
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as well as
(

E+
1

E−
1

)

=

(

e−ik1,zd 0
0 1

)

1

2

(

1 + κ2η2 1 − κ2η2

1 − κ2η2 1 + κ2η2

)(

E+
2

0

)

(12.60)

where κi = ki,z/ki+1,z and ηi = εi+1/εi. Eqns. (12.59) and (12.60) can be combined
to give

(

E+
0

E−
0

)

= T0,1 ·Φ1 · T1,2

(

E+
2

0

)

. (12.61)

Here

T0,1 =
1

2

(

1 + κ1η1 1 − κ1η1

1 − κ1η1 1 + κ1η1

)

(12.62)

and

T1,2 =
1

2

(

1 + κ2η2 1 − κ2η2

1 − κ2η2 1 + κ2η2

)

(12.63)

and

Φ1 =

(

e−ik1,zd 0
0 eik1,zd

)

. (12.64)

From this we can infer a general relation connecting the fields outside an arbitrary
system of stratified layers which reads as

(

E+
0

E−
0

)

= T0,1 ·Φ1 · T1,2 ·Φ2 · . . . · Tn,n+1

(

E+
n+1

0

)

. (12.65)

The reflectivity R(ω, kx) can be calculated from (12.65) as

R(ω, kx) =
|E−

0 |2

|E+
0 |2

(12.66)

from which E+
n+1 cancels out.

Problem 12.5 Extend the program you have just written to determine the amount
of intensity enhancement obtained right above the metal layer by determining the
ratio between the incoming intensity and the intensity right above the metal layer.

Problem 12.6 Prove that Eq. (12.28) actually is exactly the electrostatic field of a
point dipole, only that it oscillates in time with eiωt.

Problem 12.7 Solve the Laplace equation (12.41) for a spherical particle and verify
the results (12.45) and (12.46).
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